Recitation 14

December 3, 2015

Review

Orthogonal diagonalization It is just like the usual diagonalization, but orthogonal. It can only be done
to a symmetric matrix A. Then you do

e Find eigenvalues of A.

e Find eigenvectors.

e For each eigenvalue, if you have several lin. independent eigenvectors, orthogonalize them.

e Normalize all the eigenvectors you have. They would be columns of the matrix called P.

e Note: the order of eigenvectors in P should correspond to the order of eigenvalues, as before.

e Then D = PT AP is the orthogonal diagonalization of A. Note: matrix D is the same diagonalization
we did a million times before. The main difference is that P is now an orthogonal matrix.

Singular value decomposition This is a decomposition A = UX V7 (I have no idea why the notation is
so weird) of an m x n matrix A (not necessarily square), where U is orthogonal m x m matrix, V is
orthogonal n X n matrix, and ¥ is a “diagonal matrix”, i.e. a matrix of the form
D 0

== [0 ]
with D being r x r honest diagonal matrix, having non-increasing strictly positive entries on the
diagonal. The number r is the rank of A.
The main idea is again the change of basis. We can find a new nice orthogonal basis (columns of U) in
R™, a new nice orthogonal basis (columns of V') in R™ such the matrix of A relative to the two bases is
exactly X, a very simple looking matrix. This is the same idea as for a general change of basis, or for
diagonalization, or for orthogonal diagonalization.
Indeed, since V is orthogonal, V7 = V~1. If we call ¥ by the name M, V by the name P, and U by the
name @, then the equation A = ULVT just says that A = QMP~!, i.e. M = Q 'AP, and that’s exactly
the change of basis formula which we know and love!

How to find SVD Suppose you want to find an SVD of a matrix A. These are the steps.
1. Find eigenvalues \1,..., A\, of ATA, and order them to be A\; > --- > \,.
2. Singular values are o; = \/A;. These are the guys on the diagonal of ¥.

3. Find orthonormal eigenvectors v1, ..., v, of AT A corresponding to \;’s. These vectors will be the
columns of the matrix V. So by now you have both ¥ and V. Need to find U.

4. To construct U, first r columns of U can be taken to be uy := U—llAvl, Uy = 2 Av,.

En
5. To construct the rest of the columns of U (if you don’t have enough yet) just pick any vectors
Up41, - - -, Uy Which have length 1 and so that uy,...,u,, are actually orthonormal.

6. Stare proudly at this one beautiful SVD you have just constructed.

D 0
0 0
having non-zero entries along the diagonal, then the pseudoinverse AT of A is given by At = U,D"1VT,
where U, is the first r columns of U = [uy ... u»] and V; is the first  columns of V = [v1 ... v,].

Pseudoinverse If you know an SVD of a matrix A, A =UXV” and ¥ = [ ] with r X r matrix D



Problems

1 1
Problem 1. Let v1 = _12 and vy = i be two vectors in R*. Find two vectors vs,vs such that
0 1

{v1,v2,v3,v4} is an orthogonal basis of R*.

Problem 2. Find an SVD of the matrix

2 0
A= 0 —3]
Problem 3. Find an SVD of the matrix _ _
3 -3
A=10 0
._1 1 -

Problem 4. Find the pseudoinverse of the matrix A from Problem 3.

Problem 5. Which of the following quadratic forms are positive-definite, negative-definite, or neither?
Which are semi-definite?
1. Qi(z) = 323 — 22125 + 23 on R?;
2. Q2(z) = 323 — 22172 + 23 on R3;
3. Q3(x) = 6x179 + 47123 On R3;
(z)

4. Qq4(x) = —2? + 27172 Oon R2.

Problem 6. Let A =UXV7T be a SVD of an m x n matrix A.
Prove that if A is a square matrix, then | det A| is the product of singular values of A.

Prove that the columns of V are eigenvectors of AT A, and the columns of U are eigenvectors of AAT.

Problem 7. Prove that for any m x n matrix A defining A: R® — R™, you can always find a basis of R"
and a basis of R™, relative to which the matrix A becomes

, [T o
>=[p 4

where [ is r X 7 identity matrix. In other words, you can always find n X n matrix P and m X m matrix Q
such that A = QX' P~ 1,



